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Integrating Linear Interpolation Functions Across Two- and Three-Dimensional Cell Boundaries

 

Objective

 

Develop 

 

discrete expansions

 

 for linear 
interpolation functions:  expansions that 
are similar to a multivariable Taylor’s series but 
— by accounting for discontinuous interpolation 
derivatives across cell boundaries — are valid 
throughout a discretized domain.

 

Particle Methods

 

Particle methods — computational models of particle 
dynamics — often use interpolation functions to gather 
and scatter data between particles and discretized 
continuum fields. These models require a series 
expansion of the interpolation function for two 
purposes:

 

• 

 

 numerical analyses used to establish the models’ 
consistency and accuracy

 

• 

 

 logical-coordinate evaluation used to locate 
particles within a grid system.

Existing expansions (truncated, single-variable Taylor’s 
series) are inherently invalid for expansions that extend 
across cell boundaries where interpolation derivatives 
are generally discontinuous.

 

Linear Interpolation 

 

Used for both data interpolation and coordinate 
transformation —  from physical space 
to logical space coordinates — within 
discretized domains that include 2-D triangles and 
3-D tetrahedrals.

Bound logical coordinates: , , , and 

Cell-vertex (cv) coordinate vector:  
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Total Differential

 

Total differential:  a relationship between infinitesimal changes of the 

physical, logical, and cell-vertex coordinates :  

Discrete-expansion:  a relationship between the finite changes of these 
coordinates: . 

We integrate the total-differential between two particles located in 
separate, noncontiguous grid cells: State 1 and State 2.

Interpolation derivatives are generally not continuous across cell 
boundaries; original total-differential is not valid.

 

Parameterization

 

Parameterize integration coordinate-space  with the variable ‘s’, 
where , using a linear technique: .

Parameterized interpolation derivatives are continuous across cell 
boundaries; parameterized total differential is valid.
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Direct Integration Pathline

 

A straight or direct line between particle State 1 and State 2.

Finite-difference vectors: , , and 
.

Particle end-state averages:  and .

 

Upper-Step Integration Pathline

 

Partition the integration pathline in the  plane.
Integrate the upper-step pathline from State 1 to State A to State 2.

 

Lower-Step Integration Pathline

 

Partition the integration pathline in the  plane.
Integrate the lower-step pathline from State 1 to State B to State 2.

Upper-step and lower-step discrete expansions are mirror images.

Identical results for 2-D and 3-D linear-interpolation discrete expansions. 

Discrete expansions acknowledge the full functional dependence of 
interpolation and inherently account for discontinuities across cell 
boundaries.

The total-differential method is a general solution technique for developing 
interpolation discrete expansions.
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Numerical Analysis

 

Analytical investigation of particle methods is used to establish the 
method’s mathematical consistency and numerical accuracy.

Example: Predictor-Corrector time-integration for .

Discrete expansions are required to relate interpolated velocities at State 
A to State 1: 

For computational models 
that use interpolation, 
discrete expansions represent 
a key advancement in the 
capability to analyze existing 
models and to develop 
advanced models.

 

Logical-Coordinate Evaluation

 

Spatial transformation of a particle-position vector from global, physical 
space  to a local, cell-based coordinate system .

Discrete expansions are required to relate the known  to unknown .

Solution characteristics: 

• algorithmically robust 
(has a guaranteed 
nonsingular Jacobian 
matrix), and 

• computationally efficient
(derivatives are constant, 
including the Jacobian 
matrix).
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Summary

 

Discrete-expansions represent a key advancement for any particle 
method that uses interpolation by 

 

•

 

  providing the capability to analytically define a method’s 
mathematical consistency and numerical accuracy, and 

 

•

 

  representing an algorithmically robust and computationally 
efficient method to locate particles within a grid.

 

Next Development Step

 

Complete a similar total-differential discrete-expansion analysis for 
nonlinear interpolation: bilinear and trilinear functions. 
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